Фенольные соединения

К фенольным соединениям ФС относится обширный класс циклических веществ, являющихся производными ароматического спир- та фенола (С6Н5ОН). В молекуле фенольных соединений имеется ароматическое кольцо, содержащее одну или несколько гидроксильных групп. Фенольные соединения находятся в растениях, плодах и овощах преимущественно в виде гликозидов и реже в свободном виде [24].

Биосинтез фенольных соединений в растительной клетке происходит в протоплазме, в частности, в хлоропластах. Однако основная масса водорастворимых фенолов сосредоточена в вакуолях, ограниченных от цитоплазмы белково-липидной мембраной тонопластом, который регулирует участие веществ, содержащихся в вакуолях, в метаболизме клетки. В животном организме фенольные соединения не синтезируются, а поступают с растительной пищей и участвуют в обменных процессах.

К гликозидам относятся разнообразные вещества, у которых какой-либо сахар (чаще глюкоза, реже другие моносахариды) соединен за счет гликозидного гидроксила с другими веществами, не являющимися сахарами (спиртами, альдегидами, фенолами, алкалоидами, стероидами и др.). Вторая часть молекулы гликозидов называется агликоном (не сахар).

От содержания и превращений фенольных соединений зависят цвет и аромат плодов, качество чая, кофе, вина. Многие фенолы обладают свойствами витамина Р и являются антиоксидантами.

Все фенольные соединения являются активными метаболитами клеточного обмена и играют важную роль в различных физиологических функциях растений, плодов, картофеля и овощей дыхании, росте, устойчивости к инфекционным заболеваниям.

О важной биологической роли фенольных соединений свидетельствует их распределение в растительной ткани. Разные органы и ткани растений, плодов и овощей различаются не только количественным содержанием фенолов, но и качественным их составом.

В настоящее время известно более 2000 фенольных соединений, существенно различающихся по своим свойствам. В связи с этим важное значение имеет классификация фенольных соединений.

Фенольные соединения условно разделяются на три основные группы:

  • 1. Мономерные.
  • 2. Димерные.
  • 3. Полимерные.

Мономерные фенольные соединения содержат одно ароматиче-ское кольцо и делятся на три подгруппы:

соединения С6-ряда, состоящие из ароматического кольца без углеродных боковых цепей; к ним относятся гидрохинон, пирокатехин и его производные, гваякол, флороглюцин, пирогаллол. Все они содержатся в растениях главным образом в связанном виде;

соединения с основной структурой С6С1-ряда включают в себя группу фенолкарбоновых кислот и их производных протокатеховую, ванилиновую, галловую, салициловую, оксибензойную и другие кислоты; эти соединения встречаются в плодах и овощах в свободном виде;

соединения с основной структурой С6С3-ряда, состоящие из ароматического кольца и трехуглеродной боковой цепи, делятся на коричные кислоты, кумарины и производные последних: изокумарины, фурокумарины.

Кумарины рассматриваются как лактоны оксикоричных кислот. Наиболее распространенными коричными кислотами являются п-ку-маровая, кофейная, феруловая и синаповая.

Фенолкарбоновые кислоты, обладая фенольными и кислотными группами, могут реагировать друг с другом с образованием соединений типа сложных эфиров, называемых депсидами. Если в реакции участвуют две фенолкарбоновые кислоты, то образуется дидепсид, если три тридепсид и т.п. Соединения С6С3-ряда участвуют в формировании аромата и вкуса плодов и овощей.

Димерные фенольные соединения имеют основную структуру с двумя ароматическими кольцами С6С3С6 и делятся на флавоноиды и изофлавоноиды (ротеноиды). Эти соединения наиболее широко распространены в природе, и многие из них принимают участие в формировании аромата и цвета растительных продуктов.

В зависимости от структуры связующего трехуглеродного фрагмента в молекуле и степени окисленности флавоноиды подразделяются на катехины, лейкоантоцианы, флаваноны, флаванонолы, антоцианы, флавоны, флавонолы и другие. Наиболее восстановленные соединения катехины, наиболее окисленные флавонолы.

Катехины бесцветные соединения, легко окисляются, в результате чего приобретают разную окраску. Например, различный цвет чая (черный, красновато-коричневый, желтый) обусловлен степенью окисления катехинов, содержащихся в чайном листе. Существует несколько форм катехинов: катехин, галлокатехин, галлокатехингаллат и другие. Каждый катехин может существовать в виде четырех оптических изомеров, различающихся по направлению и величине угла вращения: (+)-катехин, ()-катехин; (+)-эпикатехин, ()-эпикатехин. Кроме того, для каждого катехина известны два рацемата смесь, лишенная оптической активности: (+)-катехин и (+)-эпикатехин. Все они отличаются по физическим свойствам и биологическому действию. Например, высокой Р-витаминной активностью обладает ()-эпикатехин.

В плодах и овощах катехины могут присутствовать в свободном и связанном состоянии (в составе полимерных форм). Много катехинов содержится в винограде, айве, черной смородине, яблоках, черноплодной рябине, косточковых плодах и ягодах.

Катехины хорошо растворимы в воде, имеют слабый вяжущий вкус, легко окисляются на свету, при нагревании, особенно в щелочной среде под действием окислительных ферментов (фенолоксидазы и пероксидазы). Продукты окисления хиноны и полимеризации катехинов флобафены придают плодам и овощам при термической и механической обработке темную окраску.

Окисление фенольных соединений может быть обратимым и необратимым. Этот процесс происходит и в здоровых, неповрежденных растительных клетках, но ткань их при этом не темнеет. Это обусловлено тем, что через тонопласт в цитоплазму поступает строго ограниченное количество фенолов, рассчитанное на тот ферментативный аппарат, который имеется в цитоплазме.

При окислении в здоровой клетке часть фенолов окисляется до карбоновых кислот и в качестве конечных продуктов окисления образуются СО2 и Н2О.

Часть же промежуточных продуктов окисления фенолов с помощью ферментов фенолоксидазы и пероксидазы, а также восстановителей, вновь восстанавливается до исходных соединений.

В поврежденных клетках в контакте с о-фенолоксидазой оказывается сразу большое количество фенолов и поэтому восстановления не происходит, а образующиеся хиноны необратимо конденсируются как между собой, так и с аминокислотами с образованием коричневых и красных аморфных веществ флобафенов.

Например, причиной потемнения очищенных и нарезанных клубней картофеля является окисление аминокислоты фенольного ха-рактера тирозина (-оксифенилаланин). Тирозин окисляется до диоксифенилаланина, который превращается в хинон, образующий красные гетероциклические соединения. Хиноны полимеризуются и превращаются в продукты темного цвета меланины.

Образование темноокрашенных веществ при хранении очищенного картофеля может происходить в результате окисления другого вещества фенольной природы хлорогеновой кислоты. Потемнение внутренней сердцевины картофеля связано с окислением хлорогеновой кислоты, а внешней сердцевины с окислением тирозина.

Предотвратить окисление фенолов очень важно при производстве крахмала, так как образующийся при измельчении картофеля клеточный сок содержит наряду с другими веществами тирозин. Последний легко окисляется, что вызывает потемнение крахмала, ухудшение его качества. Быстрое отделение клеточного сока от крахмала на центрифуге позволяет получить крахмал высокого качества.

Для предотвращения потемнения плодов и овощей при чистке, резке и дроблении применяют различные вещества (диоксид серы, аскорбиновую, лимонную кислоты и др.), а также тепловую обработку для инактивации фенолоксидаз, пероксидаз и каталазы.

На предприятиях общественного питания применяется сульфитация очищенного картофеля, заключающаяся в обработке клубней слабым раствором диоксида серы (0,10,2%).

Лейкоантоцианы, флаваноны и флаванонолы это бесцветные фенольные соединения. Лейкоантоцианы изменяют окраску в зависимости от температуры. Так, при 135С они имеют желтый цвет, при 165С винно-красный, выше 225С сине-серый, при 260С черный. При нагревании они превращаются в лейкоантоцианидины. Лейкоан-тоцианы в значительном количестве содержатся в плодах и овощах, придавая некоторым из них терпкий вкус.

Флаваноны и флаванонолы в свободном виде встречаются редко, чаще в форме гликозидов. Богаты ими цитрусовые плоды, в которых содержатся нарингенин, гесперидин и эридиктол.

Флавоновые пигменты это окрашенные фенольные соединения: антоцианы, флавоны и флавонолы. Эти фенольные гликозиды хорошо растворимы в воде, обладают бактерицидными свойствами. Они содержатся во многих плодах и овощах, отличаются повышенной окислительной способностью. Антоцианы имеют фиолетовый цвет, флавоны и флавонолы желтый.

Антоцианы. Они представляют собой гликозиды, в которых остатки сахаров (глюкозы, галактозы и рамнозы) связаны с окрашенными агликонами, принадлежащими к группе антоцианидинов. Раз- личают шесть антоцианидинов, составляющих агликоны антоцианов пеларгонидин, цианидин, пеонидин, дельфинидин, петунидин, мальвидин. В зависимости от наличия этих соединений плоды имеют разную окраску.

Наиболее распространен цианидин, он обнаружен в яблоках, землянике, сливах и в других плодах. В некоторых плодах антоцианы находятся только в кожице (виноград, слива), в других в кожице и мякоти (малина, черника, смородина).

В зависимости от рН окраска антоцианов может меняться от кра-сной до синей и фиолетовой (в кислой среде красные, в щелочной синие). Антоцианы с ионами К, Nа, Fе и других металлов дают соединения синего цвета.

Флавоны это пигменты, имеющие желтую окраску; содержат-ся во многих плодах и овощах. Флавоны являются предшественниками антоцианов.

Флавонолы отличаются от флавонов наличием гидроксильной группы и обладают сильными бактерицидными свойствами. Чаще всего в плодах и овощах из флавонолов распространены кверцетин, кемферол, рутин и мирицетин. Кверцетин самый распространенный флавонол придает золотистый цвет кожице лука, облепихе.

Полимерные фенольные соединения делятся на гидролизуемые и негидролизуемые конденсированные дубильные вещества.

Гидролизуемые вещества танины это сложные эфиры моносахаридов (глюкозы) и фенольных кислот (галловой, эллаговой, протокатеховой, кофейной, хлорогеновой).

Танины легко подвергаются гидролизу, распадаясь на более простые соединения. Танины взаимодействуют с солями тяжелых металлов, вызывая изменения цвета продуктов переработки плодов и овощей.

Гидролиз дубильных веществ приводит к ослаблению или исчезновению терпкого вкуса плодов и к накоплению сахаров, что улучшает вкус. Кроме того, продукты распада танинов фенольные кислоты усиливают защитные свойства плодов и овощей.

Гидролиз дубильных веществ наблюдается при дозревании плодов и овощей, нанесении механических повреждений и поражении микроорганизмами. Чаще всего при этом накапливается хлорогеновая кислота.

Негидролизуемые вещества состоят из остатков катехинов и лей-коантоцианов и образуются при окислительной конденсации этих мономеров. Конденсация флавоноидов происходит при нагревании с разбавленными кислотами. Конденсированные дубильные вещества с солями железа дают темно-зеленое окрашивание.

Конденсированные дубильные вещества содержат мало углеводов и образуют в присутствии минеральных кислот нерастворимые аморфные соединения флобафены.

Существенным качественным и количественным изменениям подвергаются фенольные соединения в плодах и овощах в процессе созревания и хранения. Количество их уменьшается за счет гидролиза и использования на дыхание. В то же время при созревании плодов и овощей такие фенолы, как антоцианы, флавоны, флаваноны, флавонолы синтезируются и улучшают цвет продуктов. В процессе хранения плодов и овощей происходит взаимопревращение фенольных соединений. Так, при гидролизе танина образуются фенолокислоты, при конденсации катехинов конденсированные дубильные вещества.

 
< Пред   СОДЕРЖАНИЕ   Загрузить   След >